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Vegetation moisture content is an important early indicator of forest drought stress, disease and fire risk.
Existing remote sensing techniques to measure biochemical properties of vegetation, such as Equivalent
Water Thickness (EWT), are limited by an inability to differentiate canopy and understorey properties and
are influenced by variations in canopy structure. By providing a range-resolved estimate of reflectance, laser
scanner measurements have the potential to overcome these limitations. Dual-wavelength laser scanning can
provide an active measurement of reflectance from which spectral indices can be derived that are insensitive
to range, incidence angle and scattering area of the target within the laser beam, factors that make exploiting
single-wavelength laser scanner intensity data difficult.
This study demonstrates the potential of dual-wavelength laser scanning for measurement of leaf biochemical
properties, through determining the relationship between a laser-scanner-derived spectral index, using near
infrared (1063 nm)andmiddle infrared (1545 nm)wavelengths, and the EWTof individual leaves. The suitability
and sensitivity of the index is tested using a leaf optical propertiesmodel (PROSPECT-5) and themethod is tested
experimentally under laboratory conditions using the Salford Advanced Laser Canopy Analyser. A strong rela-
tionship (R2=0.8, RMSE=0.0069 gcm−2) was found between a normalised ratio of the two wavelengths and
measured EWT of leaf samples. The relationship corresponds well to that predicted by modelling. However,
the experimental data also revealed significant spatial variability in the index value across individual leaves,
suggesting heterogeneity in moisture distribution at within-leaf scales. The study suggests significant potential
for using dual-wavelength and multispectral laser scanning for measuring vegetation biochemical properties.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The lack of adequate data on forest health status has been identified
as a key information gap in understanding climate change risks for
forests (Allen et al., 2010). Recent increases in tree mortality caused
by drought suggest that climatic factors may already be resulting in
forest die-back in some regions (e.g. southern parts of Europe), with
potential for a conversion to fire-prone, scrub or savannah vegetation
(Allen et al., 2010; Nepstad et al., 2008). In addition, global spread of
non-native tree pathogens and pests is occurring and climate changes
are leading to an alteration in host and pathogen distributions and
host susceptibility (Sturrock et al., 2011). Early detection is often vital
in reducing spread of infections and methods to detect early symptoms
of disease, including water stress and defoliation, are likely to be of
major benefit to forest management by improving the chances of
control or eradication (Meentemeyer et al., 2008).

Leaf or vegetation moisture content is typically measured as
Equivalent Water Thickness (EWT, the weight of water per unit area
: +44 191 222 6502.
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of leaf) and is an essential early indicator of forest drought stress
(Zarco-Tejada et al., 2003), infection by tree diseases and forest pests,
such asMountain Pine Beetle (Skakun et al., 2003), and is of key impor-
tance as an input to models of forest fire susceptibility, ignition and
propagation (Danson & Bowyer, 2004). Leaf moisture content also has
potential applications in assessing drought risk and irrigation needs in
agricultural crops (Rodríguez-Pérez et al., 2006; Wang et al., 2012; Yi
et al., 2012),whilst themoisture content of fuels plays a role in determin-
ing fire risk in a variety of other ecosystems, such as Mediterranean-
climate shrublands (Peterson et al., 2008). Whilst a range of existing
direct physiological approaches can be used tomeasure vegetation stress
and EWT in thefield, the scope of such approaches for examining tempo-
ral and spatial heterogeneity and for long-term monitoring is limited.
Vegetation and soil moisture content can be measured over large spatial
and long temporal scales using a range of remote sensing techniques,
including radar, thermal and optical sensors. A number of spectral indi-
ces based on near infrared (NIR) andmiddle infrared (MIR)wavelengths
have been developed that strongly relate to EWT (Ceccato et al., 2001)
and these have been widely applied to satellite data (e.g. Landsat 5
TM) for measuring vegetation liquid water content, for drought assess-
ment, and for disease detection (Gao, 1996; Gu et al., 2007; Skakun et
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al., 2003). The accessibility, high spatial and temporal resolution, and
presence of a long archive of optical imagery gives such approaches an
advantage over the use of radar imagery for long-termmonitoring. How-
ever, passive optical measurements of canopy reflectance, and resulting
estimates of leaf biochemical properties (including EWT, but also for
example, leaf pigment concentrations), are influenced by atmospheric
conditions, illumination and viewing geometry, canopy structure, and
soil and understorey vegetation reflectance (e.g. Asner, 1998; Dawson
et al., 2003; Huete et al., 1985;Wessman, 1994). It is particularly difficult
to separate the vegetation canopy signal from that of the background
understorey and soil, a problem frequently shared with synthetic aper-
ture radar (e.g. Notarnicola & Posa, 2007) and thermal measurements
(e.g. Thomson et al., 2012).

Active measurements of reflectance, derived from laser scanner
data, have the potential to overcomemany of these limitations. Active
measurements, utilising a laser illumination source, are largely inde-
pendent of illumination conditions (potentially allowing measure-
ments at night) and make reflectance measurements with a fixed and
optimal viewing and illumination geometry, measuring backscatter
at the ‘hotspot’ where no shadowing is present (Woodhouse et al.,
2011). As the measurements are range resolved, these approaches
also have a significant benefit in providing three-dimensional estimates
of reflectance properties of targets and, based on modelling studies,
in separating, by range, reflectance signals of tree canopies and the
understorey and soil (Morsdorf et al., 2009; Woodhouse et al., 2011).
In three-dimensional and heterogeneous environments such as forests,
such methods therefore have great promise in improving estimates of
canopy leaf biochemical properties and providingmore directmeasure-
ment of soil properties and shaded understorey. Measurements from
terrestrial laser scanners are required to improve the exploitation of
satellite data, through facilitating the up-scaling of leaf level measure-
ments to the canopy (for example, Van der Zande et al., 2009) and the
measurement of spatial heterogeneity in canopy properties. Airborne
and satellite-based systems have the potential to allow improved esti-
mates of forest and vegetation vigour over larger areas.

Terrestrial and airborne laser scanning has been widely utilised for
the retrieval of forest structure parameters (for comprehensive reviews
see Hyyppä et al. (2008) and Van Leeuwen and Nieuwenhuis (2010)).
However, little consideration has been given to the use of intensity
data from laser scanners to provide complementary information on
leaf biochemistry and vegetation type. A number of studies have
attempted to utilise laser scanner intensity data for species classification
or distribution mapping in forested environments, usually in conjunc-
tion with structural indices (for example, Kim et al., 2011; Korpela,
2008; Ørka et al., 2009) and other researchers have focused on fusion
of laser scanner and passive hyperspectral data sets to obtain both phys-
ical and biochemical properties of vegetation canopies (for example,
Asner et al., 2007). A small number of recent studies have examined
the ability of terrestrial laser scanner data to provide information on
leaf biochemical properties (Eitel et al., 2010, 2011; Wei et al., 2012).
Eitel et al. (2010), showed a strong correlation between laser return
intensity (at 532 nm) and Chlorophyll a and b (Chlab) content, but
also demonstrated that estimation of Chlab levels were significantly
influenced by incidence angle of the laser beam and by the presence
of ‘edge returns’, where the leaf only partially occupied the laser foot-
print. Correction for incidence angle effects in vegetation canopies,
which are dependent on leaf angle distribution, is extremely difficult
with a single-wavelength laser system.

A detailed review of calibration considerations for laser intensity
data is beyond the scope of this paper, but can be found in Höfle and
Pfeifer (2007) and Kaasalainen et al. (2009). However, the exploitation
of intensity data for determining target reflectance properties is compli-
cated by the dependence of backscatter intensity on the range to the
target, the scattering area of the target within the laser beam, and
the local incidence angle and surface roughness of the target (Ahokas
et al., 2006; Höfle & Pfeifer, 2007; Kaasalainen et al., 2009). As range
information for each return is also acquired by laser scanners, this can
be used, in conjunction with knowledge of the instrument characteris-
tics, to calibrate for range effects based on the inverse distance square
law (Ahokas et al., 2009). Correcting for local incidence angle and for
returns resulting from objects partially occupying the laser beam is
more difficult. The use of dual-wavelength laser scanning systems po-
tentially allows the calculation of spectral ratios that account for these
factors. The influence of incidence angle and area of the target within
the footprint will be similar at both wavelengths and so, assuming the
beams are perfectly aligned, the resulting ratio should be insensitive
to these factors and influenced primarily by the spectral reflectance
of the target. Such systems therefore hold significant promise for leaf
biochemical measurements in vegetation canopies (Eitel et al., 2010,
2011). Through modelling approaches, Morsdorf et al. (2009) demon-
strated the potential of multispectral laser scanning to detect variation
in chlorophyll content. Range resolved measurements of canopy bio-
chemical properties were also shown theoretically to facilitate separa-
tion of responses from woody material and foliage (Morsdorf et al.,
2009).

A number of prototype, mainly laboratory-based, multispectral
laser systems have recently been developed for vegetation applications.
Rall and Knox (2004) developed the dual-wavelength Spectral Ratio
Biospheric Lidar, showing changes in the red to near-infrared ratio
from a tree canopy over a phenological cycle. Tan et al. (2005) devel-
oped a dual-wavelength (1064 nm and 532 nm) airborne system
(the Multiwavelength Airborne Polarimetric Lidar), demonstrating
reflectance differences between tree species were detectable, whilst
Woodhouse et al. (2011) have developed the Multispectral Canopy
LiDAR system, which uses a single tunable laser aimed at measuring
Normalised Difference Vegetation Index (NDVI) and Photochemical
Reflectance Index (PRI) and is designed as a prototype airborne sensor.
Wei et al. (2012) describe a laboratory-based prototype of a multispec-
tral LiDAR designed for vegetation applications and making measure-
ments at four wavelengths (556, 670, 700 and 780 nm). Hakala et al.
(2012) describe a multispectral LiDAR system using supercontinuum
lasers capable of making measurements in 8 spectral bands optimised
for vegetation. None of these systems are easily field portable and only
the latter two (Hakala et al., 2012 and Wei et al., 2012) contain a scan-
ning mechanism, limiting their immediate usefulness and practicality
for in-situ measurements of vegetation canopies.

Narayanan and Pflum (1999) demonstrated the potential of ratios
of laser reflectance in the9–11 μmwavelength region for distinguishing
stressed and healthy plants, but did not relate the ratios to specific bio-
chemical properties and were largely unable to distinguish the type of
stress. Only one study has experimentally examined the potential of
dual-wavelength or multispectral laser scanning to measure leaf bio-
chemical properties and none have examined the estimation of leaf
water content. Wei et al. (2012) demonstrated strong relationships
(R2 of up to 0.82) between activelymeasured spectral indices, including
anNDVI equivalent, and foliage nitrogen levels, using data derived from
their four-wavelength laser scanner. Their results showed that multi-
spectral laser scanners have significant potential for measurement of
leaf biochemical properties, but the study was based on a very small
number of samples and further research is needed to demonstrate the
full potential of such techniques and to explore the range of biochemical
properties that can be retrieved.

This paper tests the potential of a unique, full-waveform dual-
wavelength laser scanner system, the Salford Advanced Laser Canopy
Analyser (SALCA), for estimating the EWT of leaf samples. The field-
portable SALCA instrument (Section 2.1) operates at two wavelengths
(1063 nm and 1545 nm), scans a full hemisphere, and is the first such
instrument to include a middle-infrared wavelength. SALCA therefore
has significant potential for providing an improved ground-based ap-
proach to measurement of canopy EWT, as a validation instrument for
other remotely sensed data sets, allowing up-scaling of leaf level phys-
iological measurements to canopy scales, and as a proof-of-concept for
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future airborne or satellite-based systems designed to monitor forest
vigour. The specific aims of this study are to i) determine the suitability
and sensitivity of SALCAwavelengths for measurement of leaf moisture
content in comparison to more commonly employed spectral indices
and ii) to provide the first experimental demonstration of the potential
of dual-wavelength laser scanning to measure leaf moisture content.

2. Methods

The aims of the paper are addressed using a combination of radiative
transfer modelling and experimental approaches. The PROSPECT-5 leaf
optical properties model (Féret et al., 2008; Jacquemoud & Baret, 1990)
was used to compare SALCA-wavelength derived spectral indices to
those more commonly used in passive optical systems and determine
their sensitivity to leaf moisture content. Measurements from SALCA
were then used to determine the relationships between laser-derived
reflectance, spectral indices and leaf EWT.

2.1. The Salford Advanced Laser Canopy Analyser

The SALCA instrument is a full-waveform terrestrial laser scanner
designed for characterising forest canopies by the University of Salford,
UK and Halo Photonics Ltd. This hemispherical-scanning instrument
records the full-waveform of backscattered energy at two wavelengths
in the near and middle infrared (1063 nm and 1545 nm). Near and
middle infrared wavelengths were selected to allow separation of
foliage and woody material which, along with the full waveform data
generated, should improve estimates of forest LAI over those obtainable
from commercially available laser scanner systems. The specific wave-
length selection of 1063 nmand 1545 nmreflects the commercial avail-
ability of lasers at these wavelengths. However, the inclusion of near-
infrared and middle-infrared wavelengths also allows the calculation
of spectral indices comparable to thosemore commonly usedwith pas-
sive optical data for the estimation of leaf moisture content (Féret et al.,
2011). The full specification of the instrument is given in Table 1. The
two laser beams follow the same optical path and are closely aligned,
with an offset between wavelengths (6 μrad), equating to less than 1%
of the footprint area, caused by the speed of rotation of the scanner
head and sequential firing of the wavelengths. External neutral density
filters can be used to adjust signal levels to avoid near-range saturation
or improve signal-to-noise ratios at long range.

2.2. Leaf reflectance modelling

The aim of themodelling component of this study was to determine
the suitability of SALCA wavelengths for estimating leaf moisture con-
tent, in comparison to wavelengths and indices previously suggested
for use in estimation of EWT, and to define the optimal form of a
SALCA-derived spectral index for this purpose. However, it is not the
intention of this paper to determine the optimal wavelengths for use
Table 1
System characteristics of the SALCA instrument.

SALCA system specifications:

Centre wavelengths 1545.4 nm and 1063.4 nm
Pulse length 3 ns (1545 nm) and 1 ns (1063 nm)
Pulse rate 5 kHz
Beam width at sensor 3.6 mm (1545 nm) and 2.4 mm (1063 nm)
Beam divergence 0.56 mrad
Laser output energy 5 μJ (1545 nm) and 0.5 μJ (1063 nm)
Detector field of view 2.67 mrad
Sampling rate 1 GHz
Range resolution 15 cm
Maximum range 105 m
Angular sampling step 1.05 mrad
Angular displacement
between wavelengths

6 μrad
in EWT estimation; that aim has been addressed elsewhere (for exam-
ple, Féret et al., 2011; Wang & Li, 2012). The PROSPECT-5 leaf optical
model was used to simulate a dataset of leaf spectral reflectance.
A total of 420 model runs were used to simulate leaf reflectance over
a range of EWT, dry matter content and leaf structure parameters
(Table 2). Pigment concentration was kept constant (at model defaults
of Cab=47.7 μg cm−2, Car=4.4 μg cm−2, Cbrown=0) as these parame-
ters have no significant influence on the near-infrared andmiddle infra-
red reflectance of interest in this study. The minimum and maximum
input values for the water content (denoted Cw in PROSPECT) and dry
matter content (Cm) parameters were the minimum and maximum
parameter values identified across four experimental datasets by Féret
et al. (2008), including the LOPEX, CALMIT, ANGERS and HAWAII data-
bases. The leaf structure parameter (N) covered the full range of 1 to 3
(Féret et al., 2008). A uniform distribution of parameter values was
assumed, parameters were assumed to be independent (acknowledged
to be unlikely in reality) and all combinations of parameters were
considered.

Leaf reflectance values corresponding closely to SALCAwavelengths
(1063 and 1545 nm) were extracted from the simulated dataset and
used to calculate values of two potential spectral indices, a normalised
ratio (SALCA Normalised Ratio Index, SNRI) and a simple ratio (SALCA
Simple Ratio Index, SSRI) (Table 3). In addition, two commonly used
indices based on other wavelengths (the Normalised Difference Water
Index (NDWI) and the Moisture Stress Index (MSI)), and two indices
shown to be optimal by Féret et al. (2011), ND1062, 1393 and RI1062, 1393,
were calculated to allow comparison of sensitivity (Table 3). The choice
of such indiceswas limited to indices using ratios of discrete bands rath-
er than including those using approaches, such as derivative analysis,
whichwould require hyperspectral data that is unavailable fromSALCA.

Relationships between the simulated spectral index values and EWT
(defined as the value of the PROSPECT Cw parameter) were determined
using Reduced Major Axis (RMA) regression, due to the need for sym-
metrical relationships that can be inverted to estimate biochemical
parameters (Smith, 2009). Spectral indices and biochemical parameters
were square root transformed prior to regression to ensure a linear
relationship. RMA was then used to obtain regression coefficients and
coefficients of determination (R2) which provided the basis to assess
the relative sensitivity of the spectral indices to leaf EWT. The Root
Mean Square Error (RMSE) of the relationships in predicting biochemi-
cal parameters was determined by inverting the derived models and
estimating RMSE using leave-one-out cross validation methods. Rela-
tionships with the other biochemical parameters (Cm and N) were
also assessed for SALCA-derived indices to determine their likely influ-
ence on estimation of EWT. All statistical analysis was implemented in
MATLAB® (R2012a, The MathWorks, Natick, MA).

2.3. EWT retrieval from SALCA data

2.3.1. Experimental setup
To determine the relationship between SALCA return intensity and

leaf EWT, five leaves, from three different species, were chosen on the
basis of availability, having a large leaf area, and representing a range
of potential leaf structures. One leaf was Brassica oleracea (cabbage),
one a Spathiphyllum species (peace lily) and the remaining three were
Fallopia japonica (Japanese knotweed). In the case of one of the Fallopia
samples, two leaveswere used to provide a double thickness and ensure
a high level of EWT for comparative purposes. The fresh leaves were
Table 2
Model parameters used in PROSPECT-5 model simulations.

Prospect parameter Minimum Interval Maximum

Equivalent water thickness (Cw), g cm−2 0.0043 0.005 0.0713
Dry matter content (Cm), g cm−2 0.0017 0.0025 0.0165
Leaf structure (N) 1 0.5 3



Table 3
Spectral reflectance indices considered in this study. ρ indicates reflectance and all
wavelengths are given in nm.

Index Formula Source

SALCA Normalised Ratio Index SNRI ¼ ρ1063−ρ1545ð Þ
ρ1063þρ1545ð Þ This study

SALCA Simple Ratio Index SSRI ¼ ρ1063
ρ1545

This study

ND1062, 1393 ND1062;1393 ¼ ρ1062−ρ1393ð Þ
ρ1062þρ1393ð Þ Féret et al. (2011)

RI1062, 1393 RI1062;1393 ¼ ρ1062
ρ1393

Féret et al. (2011)

Normalised DifferenceWater Index NDWI ¼ ρ860−ρ1240ð Þ
ρ860þρ1240ð Þ Gao (1996)

Moisture Stress Index MSI ¼ ρ1600
ρ820

Rock et al. (1986)
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first weighed and their leaf areas determined. Theywere thenmounted
in cardboard frames and supports to ensure consistent placement
throughout the experiment and easy extraction of valid leaf data points
from the laser scanner data. The frames, and a white Spectralon® cali-
bration panel, were positioned at a distance of 6.05 m from the SALCA
instrument, resulting in a beam footprint diameter of 0.58 cm at
1063 nm and 0.7 cm at 1545 nm. A clear space of 60 cm (four range
bins) was ensured behind the samples so that leaf response was not
influenced by transmitted energy reflected from the wall behind. The
leaves were then scanned at 16 time intervals over a total period of
47 h as they dried naturally. An absorptive neutral density filter with
optical density of 1.0 was used during the experiment to ensure the
signal did not saturate the detector given the high reflectivity of the
Spectralon panel and close range of samples. Each leaf sample (including
mount)wasweighed immediately before each scan to allow determina-
tion of EWT. To minimise any influence of instrument temperature or
background illumination on intensity measurements, lights were
switched off during scans and SALCA was turned on exactly eight
minutes before each scan. At the end of the experiment, all leaf samples
were oven dried for 48 h at 65 °C to determine dry weight and allow
calculation of EWT.
Table 4
Sensitivity of spectral indices to EWT (g cm−2) based on the RMSE in prediction, R2

and significance of the regression.

Index RMSE R2

SALCA Normalised Ratio Index 0.0076 0.8957⁎⁎

SALCA Simple Ratio Index 0.0121 0.8017⁎⁎

ND1062, 1393 0.0071 0.9092⁎⁎

RI1062, 1393 0.0111 0.8311⁎⁎

Normalised Difference Water Index 0.0080 0.8980⁎⁎

Moisture Stress Index 0.0091 0.8717⁎⁎

⁎⁎ Slope is significant at a Pb0.01 level.
2.3.2. SALCA data processing and analysis
Individual scanswere processed to extractwaveforms corresponding

to each leaf sample. Between 12 and 35 waveforms were identified and
extracted per leaf, avoiding waveforms close to the cardboard frame. As
waveforms were extracted from within the frame, only waveforms
representing full hits of the leaf (generating single returns) were includ-
ed. The samewaveforms, with consistent footprint locations on the leaf,
were extracted for each time interval. A constant threshold was applied
to eliminate parts of the waveform signal resulting from background
noise by setting the intensity of these regions to zero. Backscatter inten-
sity was then determined as themaximum intensity of the return peaks,
which were located using zero crossings of the first derivative of the
waveforms. As all returns were from single leaf targets occupying the
entire laser footprint, integration of the area under the waveform
curve was not necessary to provide a measure of intensity in this case.

As all leaf sampleswere at very similar ranges (within a single 15 cm
range bin), correction of range effects on intensitywas not necessary for
this study. Intensity was normalised for variations in laser output inten-
sity (which should vary by less than 5% of peak power) and background
illumination, based on intensity values of 140 waveforms extracted
from the Spectralon® panel (with a known reflectivity of 0.94 at
1063 nm and 0.96 at 1545 nm) included in each scan. Signal-to-noise
ratios of the intensity data, for the Spectralon panel located at 6.05 m
range and with the filter combinations used in this experiment, were
8.87 dB and 12.88 dB for the 1063 nm and 1545 nm wavelengths
respectively. The SALCA instrument displayed some non-linearity in
reflectance response, especially in the 1545 nmwavelength. Calibration
of measured intensity to absolute reflectance was therefore necessary
before calculation of indices. Empirical relationships betweenmeasured
intensity and reflectance were fitted to calibration data obtained by
scanning eight near-Lambertian calibration panels exhibiting a variety
of reflectances (as measured with an ASD field spectroradiometer
with a contact probe), at the same range as the experiment was
conducted. These relationships, a quadratic relationship for 1063 nm
(Eq. 1, R2=0.98, RMSE=0.048) and an exponential relationship for
1545 nm (Eq. 2, R2=0.96, RMSE=0.069), were then used to convert
intensity measurements (I) to reflectance (ρ1063 and ρ1545). The differ-
ence in the extent of non-linearity of the relationships reflects the
significant difference in the outgoing pulse strength at the two wave-
lengths (Table 1) and therefore in the range of signal intensities
recorded at the detector.

ρ1063¼aI2þbIþc where a ¼ 4:68� 10−5
; b ¼ 0:0063; c ¼ −0:0667 ð1Þ

ρ1545¼aebIþcedI where a ¼ 1:82� 10−11
; b ¼ 0:1056; c ¼ 0:0233;

d ¼ 0:0123

ð2Þ

Intensity values were extracted for each waveform from both
wavelengths and SNRI and SSRI (Section 2.2) were calculated on a
waveform-by-waveform basis. The mean and standard deviation of
the index values, and of the individual wavelength reflectance values,
were then calculated for each leaf sample at each time interval. RMA
regression was again used to determine relationships (of all leaves
combined) between reflectance at 1063 nm, reflectance at 1545 nm,
spectral indices and themeasured leaf EWT. As relationshipswith spec-
tral indices were very close to linear for the experimental data, these
variables were not square root transformed prior to analysis; however,
in analysing reflectance of the individual wavelengths, transformation
was applied. As above, RMSE was determined using leave-one-out cross
validation.

3. Results

3.1. PROSPECT modelling

All of the spectral indices tested, including those derived using
SALCA wavelengths, were found to be significantly correlated with
EWT (Pb0.05, Table 4). The most strongly correlated index, with the
lowest error in prediction, was ND1062,1393, as proposed by Féret et al.
(2011). However, the SALCA Normalised Ratio Index (SNRI) was also
strongly related, with a similar R2 value to ND1062,1393 and the more
commonly used NDWI, and slightly lower RMSE than NDWI. This
SALCA-derived index therefore seems well suited (and the optimal
form of index) for use in estimating EWT. The simple ratio of SALCA
bands (SSRI), along with RI1062,1393 and MSI, had a slightly weaker
relationship to EWT and produced a slightly higher RMSE, but still rep-
resents a useful index.

The sensitivity of the SNRI to other PROSPECT model parameters
was also evaluated. No statistically significant relationship was found
with drymatter content (Cm), suggesting the index should be relatively
insensitive to the amount of dry matter in a leaf. The relationship
between the optimum index identified (ND1062,1393) and dry matter
content was also not significant. However, a significant, but weak,



Fig. 2. Change in mean SALCA-derived reflectance of leaf samples with EWT (g cm−2)
for the 1063 nm and 1545 nm wavelengths.
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relationship was found between the leaf structure parameter (N) and
the SNRI (along with the ND1062,1393 and MSI) with an increase in the
value of N resulting in a small decrease in the value of the SNRI (y=
−0.5254x+1.401, R2=0.0818). This indicates some residual impact
of leaf structure on index values, in keeping with the influence found
for other spectral indices involving the middle-infrared.

3.2. Experimental study

During the course of the experiment, the leaves dried at different
rates and to different degrees (Fig. 1). The Spathiphyllum leafwas partic-
ularly resistant to drying, with EWT changing little during the course of
the experiment. B. oleracea also dried relatively slowly and maintained
high levels of EWT until the end of the experiment. However, all leaves
combined provided a significant range of EWT values over time, from
0 gcm−2 to 0.05 gcm−2, similar to the range in the modelled data.

Statistically significant relationships were found between EWT and
reflectance derived from active SALCA measurements at both wave-
lengths (Fig. 2). 1063 nm reflectance declined only slightly as EWT
increased, whilst reflectance at 1545 nm decreased more significantly.
Use of a single wavelength (1545 nm) to predict EWT resulted in
a RMSE of 0.008 gcm−2 (Table 5). A strong (R2=0.8, RMSE=
0.0069 gcm−2), almost linear relationship was found between the
SALCA-derived SNRI and EWT (Fig. 3). Fitting a polynomial curve to
the relationship resulted in no significant improvement in model
performance compared to a linear relationship and the relationship
between SNRI (as well as SSRI) and EWT was therefore modelled as
linear (Table 5). As predicted by PROSPECT, the SNRI showed a slightly
stronger relationship to EWT than SSRI and both resulted in a decrease
in the error of estimation of EWT over the use of a single wavelength
(Table 5). At the level of a single species, relationships between
EWT and SNRI were somewhat weaker but still resulted in statistically
significant relationships (R2=0.743 and RMSE=0.0059 gcm−2 for
B. oleracea andR2=0.656 andRMSE=0.0075 gcm−2 for F. japonica), ex-
cept in the case of Spathiphyllum (R2=0.009, RMSE=0.0035 gcm−2),
where there was very little overall change in EWT over the experiment
(Fig. 1).

Although a strong relationship was found between SNRI and EWT
across the combined dataset, there was significant variability in index
values across a single leaf sample. Fig. 4 shows the variability in index
value across the 25 waveforms retrieved from one leaf sample (the
B. oleracea leaf). The average (across all time intervals) standard devi-
ation in SNRI across the leaf was 0.095. In comparison, the average
standard deviation in SNRI (based on 140waveforms) for the spectrally
uniform Spectralon calibration panel was 0.020, with a maximum stan-
dard deviation at any time interval of 0.022, suggesting only a small
Fig. 1. Change in leaf EWT (g cm−2) over the course of the experiment.
proportion (23%) of the variability across a leaf could be accounted for
by fine-scale temporal variations in laser output intensity. This suggests
that there may be significant spatial variability in EWT, or in other fac-
tors such as leaf structure which may influence spectral properties,
within each leaf and this is discussed in detail in Section 4.

To compare the relationship between the SALCA-measured spectral
index (SNRI) to that from leaf reflectance modelling, the PROSPECT
modelled and experimental data were combined (Fig. 5). The relation-
ship found from the experimental data was similar, and had a similar
slope, to that derived from the model. However, the experimental rela-
tionship was more linear. In general, most measurements of the SNRI
lay within the range expected from PROSPECT. However, there were
exceptions related to the leaf sample with double thickness (F. japonica
(double)) and samples with very low EWT. The measured SNRI for the
double leaf sample was generally lower than would be expected for
an equivalent EWT. An increase in the leaf structure parameter (N) in
PROSPECT was shown previously (Section 3.1) to result in a decrease
in the SNRI and as this parameter relates to the leaf anatomy and the
number of stacked layers from which it is assumed in the model to be
composed (Jacquemoud & Baret, 1990), it is reasonable to assume
that the value of N that would be appropriate for modelling two tightly
stacked leavesmay lie outside of the range considered in the PROSPECT
modelling (N=1–3). Changes in leaf structure during drying, and
resulting reflectance changes, may also account for differences between
modelled and observed SNRI at very low EWT levels and are discussed
further in the next section.

4. Discussion

Leaf reflectance modelling using the PROSPECT-5 leaf reflectance
model demonstrated that the wavelengths employed by the SALCA
instrument (1063 and 1545 nm) are suitable for use in the estimation
Table 5
RMA regression results showing the relationship between SALCA-derived reflectance
and spectral indices and EWT (g cm−2) of leaf samples. RMSE values were obtained
through model inversion and leave-one-out cross validation.

Dependent variable Slope Intercept R2 RMSE (g cm−2)

SNRI 9.5825⁎⁎ 0.1029 0.7959 0.0069
SSRI −12.2207⁎⁎ 0.8242 0.7879 0.0070
1545 nma −1.4144⁎⁎ 0.6450 0.6556 0.0080
1063 nma −0.7329⁎ 0.707 0.0343 0.0184

a X and Y variables square root transformed before regression.
⁎ Significant at a Pb0.05 level.

⁎⁎ Significant at a Pb0.01 level.
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Fig. 3. Relationship between mean SALCA-derived normalised ratio of 1063 and
1545 nm (SNRI) and EWT (g cm−2) of the leaves.
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Fig. 5. Comparison of experimental and PROSPECT modelled data relating the
SALCA-derived SNRI to the EWT of the leaf.
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of leaf EWT. The 1545 nm wavelength was known to lie in a spectral
region highly sensitive to leaf moisture content from previous model-
ling studies (for example, Ceccato et al., 2001). However, the 1063 nm
laser is also influenced to some extent by leaf water content, as well
as dry matter content and leaf structure (Bowyer & Danson, 2004;
Ceccato et al., 2001), and it was unclear to what extent the sensitivity
of an index derived from these two wavelengths would be
compromised by use of this reference wavelength. The SNRI proposed
here was found to have very similar sensitivity to EWT to other indices
more commonly used with passive optical data, such as the NDWI, and
outperformed some commonly employed ratios (e.g. MSI), due to the
greater impact of leaf moisture on 1545 nm reflectance compared to
longer wavelengths (1600 nm). A normalised ratio of the two SALCA
wavelengths was found to be preferable to a simple ratio, but both
would represent effective methods of estimating EWT.

Themodelling results indicated that leaf structure (including internal
leaf structure and thickness) was likely to influence estimation of EWT
using spectral indices at these wavelengths. This influence on spectral
indices for estimation of water content has been found in previous stud-
ies (for example, Danson et al., 1992; Zarco-Tejada et al., 2003). Ceccato
et al. (2001) found that leaf structure accounted for 7.5% of the variation
in the Moisture Stress Index. Although the effect is small compared to
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Fig. 4. Relationship between the SALCA-measured SNRI and EWT for the Brassica
oleracea leaf. Crosses represent the mean index value of the sample waveforms, whilst
the error bars show ±1 standard deviation. R2=0.743, n=25, Pb0.001.
the magnitude of change in the SNRI resulting from varying EWT, it is
likely to introduce some error in the estimation of EWT using SALCA.
There is no evidence that the SNRI was significantly more influenced
by leaf structure than other commonly used indices (e.g. MSI or
ND1062,1393), but it may be necessary to calibrate the relationship
between EWT and SNRI separately for different leaf structures (for
example, needle-leaves versus broadleaves).

The experimental results support the outcomes of the PROSPECT
modelling and demonstrate that reflectance properties and derived
spectral indices can be successfully obtained from active optical mea-
surements with a dual-wavelength laser scanner. The observed trend
was more linear than was expected from the PROSPECT model. Sensi-
tivity of middle-infrared based indices to changes in EWT has been
shown to decrease at higher levels of EWT (Wu et al., 2012), and as
the range of leaf EWT observed during the experiment was limited
(0–0.054 g cm−2), a non-linear trend is to be expected over a greater
range of EWT. It was also observed that some values of SALCA SNRI at
low levels of EWT lay outside of the range predicted by PROSPECT.
This result is similar to that demonstrated by Aldakheel and Danson
(1997), where a greater difference between PROSPECT modelled and
measured spectral reflectance occurred near the end of a leaf dehydra-
tion experiment. This was suggested to be due to changes in leaf struc-
ture during drying, with a leaf structure parameter (N) of 4.9 needed to
produce the measured spectral properties of dry leaves with an EWT of
0.02 g cm−2. This is well outside of the values of N used in modelling
here (N=1–3) and may well account for these discrepancies, which
predominantly lie below modelled values. Overall, the strong relation-
ship (R2=0.8) between EWT and a normalised ratio of the two SALCA
wavelengths (1063 nm and 1545 nm) indicates the potential for
using this technology for measuring leaf moisture content in the field,
with potential applications in up-scaling physiological measurements,
assessing spatial heterogeneity in leaf and canopy water stress and in
validation of estimates of leaf moisture content from satellite imagery.
The results also point to the future potential of airborne and spaceborne
dual-wavelength and multispectral laser scanners for combined three-
dimensional measurement of canopy structure and biochemistry.

Despite a strong relationship for the combined leaf data set, a signif-
icant spread of spectral values was measured within individual leaves.
Measurements of leaves made with a laser with low beam divergence
and small footprint size, such as those of SALCA, especially at close
range, differ markedly to measurements using a typically wider field-
of-view passive sensor. Individual waveforms in this experiment repre-
sent the reflectance characteristics of an area of leaf with a diameter of
0.58–0.7 cm, with multiple observations per leaf. SALCA estimates of
EWT are therefore made at a within-leaf scale, whilst comparison is
made to EWT directly measured for the whole leaf. Leaf blades exhibit
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fine-scale spatial variability in structure (for example, differences
between leaf veins and different areas of the leaf blade) and these struc-
tural characteristics have a major influence on the distribution of water
across the leaf (Sack & Holbrook, 2006), as well as resulting in variation
in leaf thickness (Repka & Jureková, 1981). The rate at which water is
lost by transpiration also varies between zones of the leaf blade and
higher water saturation deficits may be present at the base and centre
of drying leaves (Slavík, 1963). As leaves becomewater stressed, stoma-
tal conductance decreases and in some leaves, this process can result in
a patchy distribution of stomatal closure (patchy stomatal conduc-
tance), potentially reducing transpiration from some areas of the leaf
(Kamakura et al., 2012; Mott & Buckley, 2000). Under high levels of
water stress, vein cavitation can also occur, limiting water supply to
parts of a leaf blade (Nardini et al., 2003; Scoffoni et al., 2011). As EWT
is determined by cell water content and leaf thickness, the variability
in these parameters across the leaf, due to the processes described
above, may account for variability in reflectance between SALCA foot-
prints. Variability in spectral properties at other wavelengths has been
previously detected at a within-leaf scale, and especially over leaf
veins (Castro-Esau et al., 2006). A patchy pattern of drying was visible
inmany of the leaf samples during the experiment; however, further re-
search is needed to determine the degree to which patchy distribution
of leafmoisture accounts for this variability compared to other potential
sources of noise. Comparison with variation in SNRI across a Spectralon
panel demonstrated fine temporal variations in laser output intensity
or background illumination were unlikely to account for much of
the variability observed within leaves. However, although reflectance
measurements obtained from active laser instruments will be less
influenced by illumination and viewing geometry than those of passive
hyperspectral sensors, the signal-to-noise ratio of laser intensity mea-
surements may often be lower, as the reflected signal is recorded in
narrow time bins (for example, signal-to-noise ratios in this experiment
were between 8.87 dB and 12.88 dB). The signal-to-noise characteris-
tics will also change according to range and can be modified through
the use of filters or through adjusting laser output power. More exten-
sive research on the signal-to-noise characteristics of active laser instru-
ments is therefore needed in order to assess the precision with which
leaf and canopy reflectance properties can be derived.

This paper focussed on estimation of EWT from dual-wavelength
laser scanner intensity measurements at the scale of individual
leaves. However, the majority of applications for this technology, for
example in disease or drought stress detection, require estimates at
an individual tree or canopy scale. To date, no studies have examined
the potential of dual-wavelength or multispectral laser scanning in
estimating vegetation biochemical properties at a canopy scale. How-
ever, there are some important implications of working at such scales
which should be recognised. Eitel et al. (2006) demonstrated that
relationships between spectral indices and plant water status were
weaker for canopy than for leaf scales. They gave variability in back-
ground reflectance and leaf area index as potential reasons. Laser
scanner data, by combining reflectivity measurements with range
measurements have the potential to supress the influence of the
background soil or understorey, and to directly measure and account
for structural variability, such as changes in LAI.

A number of potential challenges to estimating leaf moisture over
canopy scales exist. This study has examined only laser waveforms in
which the entire laser footprint is occupied by leaf material at a single
range. The reality in a tree canopy will be more complex, with some
returns representing partial ‘edge’ hits and others resulting from full
or partial hits of woody material. Returns from woody material should
have low values of the SNRI. For example, ASD spectroradiometer con-
tact probe measurements of bark samples from five UK tree species,
made in support of this research, gave a mean SNRI of 0.07 compared
to an SNRI of 0.1 or greater for the majority of leaf samples measured
here. It should therefore be possible to separate returns from woody
material from those of live leaves. However, index values for bark may
be quite variable, depending on, for example the presence of lichen
and moss. It may also be difficult to separate returns fromwoody cano-
py elements from those from dead or very dry leaves. However, for
many applications, where the primary interest would be in detecting
the early stages of leaf water stress, this may not present a major limi-
tation. Of greater concern,will be accounting for the influence of objects
only partially occupying the laser beam footprint. The SNRI value should
be relatively insensitive to the cross section of the targetwithin the laser
footprint for the first return in the waveform. However, one advantage
of full waveform laser scanner data, such as that provided by SALCA, is
that multiple returns can be recorded from different depths in the can-
opy. To determine the reflectivity and biochemical properties of second
and subsequent targets, the reduction in transmitted energy incident on
the target will need to be taken into account, if this differs for the two
spectral bands. Where more than one material (such as both leaf and
woody material) occurs in the laser footprint within the same range
bin, estimates of biochemical parameters may also be biased. The likeli-
hood of this occurring seems likely to be influenced by canopy structure
and leaf size, shape and orientation. A further source of error results
from the small offset in footprint position between the two wave-
lengths for the SALCA instrument. Whilst this represents an offset of
approximately 1% of the footprint area, there will be some level of
noise introduced related to both the amount of material (for partial
hits) and the potential differences in leaf structure between footprints
and further work is needed to fully characterise this error. Analysis
at canopy scales could be limited to single returns to minimise this
influence or averaged within voxels. Finally, as with passive optical
approaches, estimation of biochemical properties at canopy scales
may also be influenced by variation in tree species and to some extent
atmospheric conditions and background illumination. Research is
on-going to determine the potential for applying the dual-wavelength
laser scanner methods described here to the retrieval of estimates of
moisture content at canopy scales, and to examine the potential for
making similar measurements from an airborne platform.
5. Conclusions

This study demonstrates experimentally the potential of dual-
wavelength laser scanning for estimating leaf moisture content. Using
intensity measurements from the Salford Advanced Laser Canopy
Analyser, a strong relationship was found between a laser-measured
spectral index (SALCA Normalised Ratio Index, SNRI) and leaf EWT.
These results show potential for the use of dual-wavelength and multi-
spectral laser scanner data for measuring the three-dimensional distri-
bution of vegetation biochemical properties, for the monitoring of
vegetation vigour and to provide a means of up-scaling leaf-level phys-
iological measurements to canopy scales. Further research is necessary
to examine whether relationships hold at canopy scales, and to develop
approaches to utilise three dimensional estimates of biochemical prop-
erties in the validation of other remotely sensed data and in ecological
modelling.
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